

Project Participants

- Stephen Jones Jackson Estuarine Lab
- Jonathan Bromley UNH Grad student
- New Hampshire DES (Natalie Landry):
 - New Hampshire Estuary Program
 - Shellfish Program
- FPA
- New Hampshire and Maine Wastewater Treatment Facilities (WWTFs)

Project Goals

- 1. Assess the impacts of WWTF hydraulic overloading
 - Relationships between flow and rainfall

Project Goals

- Estimate total fluxes of bacteria and nutrients (NH₄+, NO₃-, DON, TDN, DOC) from WWTFs
 - Standardization of indicator organisms between WWTFs (TC : FC : E. coli : Enterococci)
 - Monthly and intensive sampling
- 3. Preliminary analysis of relative risk of sewer infrastructure

Project Goals

4. Determine if regrowth of indicator organisms can occur in estuarine ecosystems

WWTF Sample Locations

- Monthly sampling at 11 WWTFs discharging to estuarine/marine waters
 - Dover, Durham, Exeter, Hampton, Newfields, Newington, Newmarket, Portsmouth and Seabrook (9 NH WWTFs)
 - Kittery and South Berwick (2 ME WWTFs)

Methods

- Assessment of hydraulic overloading from rainfall events (MORs vs. Rainfall Data)
- Monthly sampling of 11 WWTFs for bacteria and nutrient constituents of concern
- Daily and weekly intensive sampling of WWTFs for bacteria and nutrient parameters
- Review/creation of GIS coverages and maps

Analytical Parameters

- Bacteria Analyses
 - Fecal Coliforms (mTEC)
 - Escherichia coli (mTEC)
 - Total Coliforms (mEndo)
 - Enterococci (mE)
 - Injured Coliforms (mT7)
- Nutrient Analyses
 - Ammonium (NH₄+) –
 - Nitrate (NO₃-)
 - Dissolved Organic
 Nitrogen (DON)
 - Total Dissolved Nitrogen (TDN)
 - Dissolved Organic Carbon (DOC)

Question 1:

• Is there a relationship between WWTF discharge and precipitation?

Results:

- Some seasonal relationships exist between precipitation and plant discharge
- No relationship was observed between plant discharge and concentrations of indicator organisms

Question 2:

• Do relationships exist between the different indicator species used in WWTFs located within the GBE?

Results:

- Weakest relationship exists between total coliforms and fecal coliforms
- Strongest relationship exists between *E. coli* and fecal coliform concentrations

Question 3:

- How much variability exists in WWTF effluent?
 - Indicator organisms and N species
 - Monthly, weekly, and daily sampling

Durham WWTF							
Max Min							
EC (cfu/100ml)	101	BDL					
FC (cfu/100ml)	32.5	BDL					
TC (cfu/100ml)	210	40					
TDN (mg/L)	22.6	5.0					
NO ₃ -(mg/L)	10.4	0.63					
NH ₄ + (mg/L)	17.8	0					
DON (mg/L)	18.1	BDL					
DOC (mg/L)	14.6	5.1					

N	ewington V	WWTF
	Max	Min
EC (cfu/100ml)	0.5	BDL
FC (cfu/100ml)	2	BDL
TC (cfu/100ml)	84	BDL
TDN (mg/L)	21.8	2.0
NO_3^- (mg/L)	11.3	0.16
NH_4^+ (mg/L)	21.3	0.14
DON (mg/L)	14.7	ВDL
DOC (mg/L)	22.9	9.62

WWTF Identification		Nutri	rient Constituent (lbs per day)				
Identification	TDN	N-NO ₃	N-NH ₄ ⁺	DON	DOC		
Durham	130.23	75.59	45.70	13.28	98.51		
Dover	335.54	112.66	196.51	94.82	220.03		
Exeter	134.27	38.89	98.66	14.95	132.60		
Hampton	424.18	280.78	7.17	128.76	163.17		
Kittery	73.80	42.69	29.77	15.29	65.99		
Newington	11.79	2.84	8.86	2.18	13.01		
Newmarket	90.87	19.32	70.67	26.85	98.09		
Portsmouth	574.79	7.24	466.88	273.89	1353.44		
South Berwick	17.22	6.83	11.05	1.02	17.81		
Seabrook	94.94	66.38	25.18	29.02	73.44		
Total Loading	1887	653	960	600	2236		

N findings

- Ammonium seems to be the most frequent nitrogen species present in effluent
 - $-\mbox{ NH}_4^{\ +}$ is the most abundant nitrogen species in 8 of the 10 WWTFs sampled
 - Concentrations ranged from BDL to 18.29 mg/L
- WWTFs contribute to DOC concentrations
 - Concentrations observed from 3.72 mg/L to 36.54 mg/L

Bacteria Loading

- Significant variability in concentrations
- No consistent ratios between indicator bacteria
- Difficult to estimate bacterial loads to GBE

Maximum in-stream bacterial concentrations following dilution

		Durham	Dover	Exeter	Hampton	Kittery	Newington	Newmarket	Portsmouth	S. Berwick	Seabrook
Ε	C 4	1.9 (.15 1	4.2 <i>e</i>	.0 4	.5 I	BDL 0	.6 4	.3 I	BDL (.03
F	C 1	3.5 (.64 1	5.3 1	3 6	.5 I	BDL 0	.11 1	.6 I	BDL (.04
Ε	N 4	.2 (.15 2	.0 1	.5 3	.1 (.4 0	.44 (.31 I	BDL (.01
1	С 8	7.5 2	.1 2	29 4	30 7	9 (.8 2	0.8 2	1.8 (.93 2	.1

Freshwater A Beach – 88 *E.coli* Tidal recreational – 104 enterococci

Approved shellfish – 40 fecal coliforms

Question 4:

 What towns are at greater risk for contributing bacterial contamination to shellfish growing waters from leaking infrastructure?

Approach

- GIS coverages were used to create 300 ft buffers around waterways feeding into GBE
- Length of infrastructure in buffer zones was determined for each town
- Number of stream crossings were determined
- Distance to shellfish beds was calculated
- Age of infrastructure was obtained from towns

Town	Length (ft)	# stream crossings	Distance (ft)	Age	# CSOs	Relative Risk
Durham	55,500	42	3,000	1955 – 1965	0	Medium /High
Dover	143,400	55	30	1973 – 1991	0	High
Exeter	37,700	21	25,000	1962	2	Low
Hampton	73,200	29	850	1964	0	High
Kittery	24,500	4	14,000	1968 – 1969	0	Low
Newmarket	20,900	15	8,800	1980 – 1990	0	Medium
Newfields	600	0	8,000	1982	0	Low
Portsmouth	82,200	17	7,000	1800s - current	3	High
Seabrook	63,400	29	400	1996	0	High
S. Berwick	82,200	16	18.000	1900-72	0	Medium

Question 5:

• Do chlorinated bacteria recover in streams?

The VBNC State

Bacteria can maintain metabolic activity, but are unable to undergo sustained cellular division required for growth in or on a medium that normally supports growth of that cell (Oliver 1993).

Implications of Injury

- Overestimation of bacterial death
- Resuscitation from a nonculturable state
- Maintenance of virulence

Methods

Collected 5-liter samples from 10 estuary location (10 EMs); pH, salinity and nutrients analyzed

Inoculated EMs with a chlorinated cell suspension in duplicate

Stored at 20°C in the dark for 74 hours – samples collected at 0, 10, 24, 48, 74 hours. Bacterial culturability and viability determined

Stuarine Microcosm Identification	R ₇₄
OREM	0.85
TMEM	1.06
LREM	1.98
EREM	0.75
CLEM	1.23
APEM	0.36
NWEM	0.72
BPEM	0.75
SREM	0.94
DWEM	1.57
CONTROL	0.08

	Environmental Parameter								
EM		Salinity	TDN	N-NO ₃	N-NH ₄ +	DOC	P-PO ₄ +		
	pm	(ppt)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
OREM	7.4	0.7	0.87		0.12		27.7		
TMEM		5.5	2.22	ND^2	0.16	8.38			
LREM	7.4		0.42	0.16	0.046	6.64	6.18		
EREM	7.3	0.0	0.45	0.19	0.045	7.53	7.83		
CLEM	ND	0.2	1.04	ND^2	0.40	7.91	51.7		
APEM	ND		0.33	ND^2	0.067		26.9		
NWEM	7.5	0.1	0.36	0.13		6.16	3.57		
BPEM	7.4	5.9			0.062	4.97	4.56		
SREM	7.6	0.7	0.49	0.14	0.14	7.75	1.34		

R₇₄ vs. EM Environmental Conditions

EM Environmental Conditions vs. R_{74}

Backward Multiple Linear Regression Analysis Data

Variables Included in Model (p-values)		Squared Semi Partial	Model R ²	p-value
log ₁₀ DOC (0.002)	0.870	0.757	0.756	0.002
log ₁₀ DOC (0.034)	0.585	0.242	0.856	0.008
log ₁₀ N-NH ₄ *	0.468	0.155		

Summary

- An underestimation of viable bacteria in WWTF effluent occurs on a regular basis.
- Nutrients discharged from WWTFs <u>may</u> contribute to regrowth regrowth/resuscitation of bacteria in estuaries

Management Implications

- Minimize introduction of bacterial populations to surface water
- Improvement and implementation of detection methods
- Decrease nutrient inputs to estuarine surface waters

 minimize potential for nutrient-related
 resuscitation.
- More research is necessary to understand the significance of resuscitation in estuarine environments – effects of salinity, light, protozoan grazing.

Questions?